59 def step(self, closure=None):
60 """Performs a single optimization step.
61 Arguments:
62 closure (callable, optional): A closure that reevaluates the model
63 and returns the loss.
64 """
65 loss = None
66 if closure is not None:
67 loss = closure()
68
69 for group in self.param_groups:
70 for p in group['params']:
71 if p.grad is None or group['freeze']:
72 continue
73 grad = p.grad.data
74 if grad.is_sparse:
75 raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.')
76
77 state = self.state[p]
78
79
80 if len(state) == 0:
81 state['step'] = 0
82
83 state['exp_avg'] = torch.zeros_like(p.data)
84
85 state['exp_avg_sq'] = torch.zeros_like(p.data)
86
87 exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
88 beta1, beta2 = group['betas']
89
90 state['step'] += 1
91
92
93
94 exp_avg.mul_(beta1).add_(1 - beta1, grad)
95
96 exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
97
98
99
100
101
102 step_size = group['lr']
103
104 weight_norm = p.data.pow(2).sum().sqrt().clamp(0, 10)
105
106 adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
107 if group['weight_decay'] != 0:
108 adam_step.add_(group['weight_decay'], p.data)
109
110 adam_norm = adam_step.pow(2).sum().sqrt()
111 if weight_norm == 0 or adam_norm == 0:
112 trust_ratio = 1
113 else:
114 trust_ratio = weight_norm / adam_norm
115 state['weight_norm'] = weight_norm
116 state['adam_norm'] = adam_norm
117 state['trust_ratio'] = trust_ratio
118 if self.adam:
119 trust_ratio = 1
120
121 p.data.add_(-step_size * trust_ratio, adam_step)
122
123 return loss