Safemotion Lib
Loading...
Searching...
No Matches
lamb.py
Go to the documentation of this file.
4
5import collections
6
7import torch
8from torch.optim.optimizer import Optimizer
9from torch.utils.tensorboard import SummaryWriter
10
11
12def log_lamb_rs(optimizer: Optimizer, event_writer: SummaryWriter, token_count: int):
13 """Log a histogram of trust ratio scalars in across layers."""
14 results = collections.defaultdict(list)
15 for group in optimizer.param_groups:
16 for p in group['params']:
17 state = optimizer.state[p]
18 for i in ('weight_norm', 'adam_norm', 'trust_ratio'):
19 if i in state:
20 results[i].append(state[i])
21
22 for k, v in results.items():
23 event_writer.add_histogram(f'lamb/{k}', torch.tensor(v), token_count)
24
25
26class Lamb(Optimizer):
27 r"""Implements Lamb algorithm.
28 It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
29 Arguments:
30 params (iterable): iterable of parameters to optimize or dicts defining
31 parameter groups
32 lr (float, optional): learning rate (default: 1e-3)
33 betas (Tuple[float, float], optional): coefficients used for computing
34 running averages of gradient and its square (default: (0.9, 0.999))
35 eps (float, optional): term added to the denominator to improve
36 numerical stability (default: 1e-8)
37 weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
38 adam (bool, optional): always use trust ratio = 1, which turns this into
39 Adam. Useful for comparison purposes.
40 .. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes:
41 https://arxiv.org/abs/1904.00962
42 """
43
44 def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6,
45 weight_decay=0, adam=False):
46 if not 0.0 <= lr:
47 raise ValueError("Invalid learning rate: {}".format(lr))
48 if not 0.0 <= eps:
49 raise ValueError("Invalid epsilon value: {}".format(eps))
50 if not 0.0 <= betas[0] < 1.0:
51 raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
52 if not 0.0 <= betas[1] < 1.0:
53 raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
54 defaults = dict(lr=lr, betas=betas, eps=eps,
55 weight_decay=weight_decay)
56 self.adam = adam
57 super(Lamb, self).__init__(params, defaults)
58
59 def step(self, closure=None):
60 """Performs a single optimization step.
61 Arguments:
62 closure (callable, optional): A closure that reevaluates the model
63 and returns the loss.
64 """
65 loss = None
66 if closure is not None:
67 loss = closure()
68
69 for group in self.param_groups:
70 for p in group['params']:
71 if p.grad is None or group['freeze']:
72 continue
73 grad = p.grad.data
74 if grad.is_sparse:
75 raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.')
76
77 state = self.state[p]
78
79 # State initialization
80 if len(state) == 0:
81 state['step'] = 0
82 # Exponential moving average of gradient values
83 state['exp_avg'] = torch.zeros_like(p.data)
84 # Exponential moving average of squared gradient values
85 state['exp_avg_sq'] = torch.zeros_like(p.data)
86
87 exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
88 beta1, beta2 = group['betas']
89
90 state['step'] += 1
91
92 # Decay the first and second moment running average coefficient
93 # m_t
94 exp_avg.mul_(beta1).add_(1 - beta1, grad)
95 # v_t
96 exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
97
98 # Paper v3 does not use debiasing.
99 # bias_correction1 = 1 - beta1 ** state['step']
100 # bias_correction2 = 1 - beta2 ** state['step']
101 # Apply bias to lr to avoid broadcast.
102 step_size = group['lr'] # * math.sqrt(bias_correction2) / bias_correction1
103
104 weight_norm = p.data.pow(2).sum().sqrt().clamp(0, 10)
105
106 adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
107 if group['weight_decay'] != 0:
108 adam_step.add_(group['weight_decay'], p.data)
109
110 adam_norm = adam_step.pow(2).sum().sqrt()
111 if weight_norm == 0 or adam_norm == 0:
112 trust_ratio = 1
113 else:
114 trust_ratio = weight_norm / adam_norm
115 state['weight_norm'] = weight_norm
116 state['adam_norm'] = adam_norm
117 state['trust_ratio'] = trust_ratio
118 if self.adam:
119 trust_ratio = 1
120
121 p.data.add_(-step_size * trust_ratio, adam_step)
122
123 return loss
__init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0, adam=False)
Definition lamb.py:45
step(self, closure=None)
Definition lamb.py:59
log_lamb_rs(Optimizer optimizer, SummaryWriter event_writer, int token_count)
Definition lamb.py:12