44 def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6,
45 weight_decay=0, adam=
False):
47 raise ValueError(
"Invalid learning rate: {}".format(lr))
49 raise ValueError(
"Invalid epsilon value: {}".format(eps))
50 if not 0.0 <= betas[0] < 1.0:
51 raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0]))
52 if not 0.0 <= betas[1] < 1.0:
53 raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1]))
54 defaults = dict(lr=lr, betas=betas, eps=eps,
55 weight_decay=weight_decay)
57 super(Lamb, self).
__init__(params, defaults)
59 def step(self, closure=None):
60 """Performs a single optimization step.
62 closure (callable, optional): A closure that reevaluates the model
66 if closure
is not None:
69 for group
in self.param_groups:
70 for p
in group[
'params']:
71 if p.grad
is None or group[
'freeze']:
75 raise RuntimeError(
'Lamb does not support sparse gradients, consider SparseAdam instad.')
83 state[
'exp_avg'] = torch.zeros_like(p.data)
85 state[
'exp_avg_sq'] = torch.zeros_like(p.data)
87 exp_avg, exp_avg_sq = state[
'exp_avg'], state[
'exp_avg_sq']
88 beta1, beta2 = group[
'betas']
94 exp_avg.mul_(beta1).add_(1 - beta1, grad)
96 exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
102 step_size = group[
'lr']
104 weight_norm = p.data.pow(2).sum().sqrt().clamp(0, 10)
106 adam_step = exp_avg / exp_avg_sq.sqrt().add(group[
'eps'])
107 if group[
'weight_decay'] != 0:
108 adam_step.add_(group[
'weight_decay'], p.data)
110 adam_norm = adam_step.pow(2).sum().sqrt()
111 if weight_norm == 0
or adam_norm == 0:
114 trust_ratio = weight_norm / adam_norm
115 state[
'weight_norm'] = weight_norm
116 state[
'adam_norm'] = adam_norm
117 state[
'trust_ratio'] = trust_ratio
121 p.data.add_(-step_size * trust_ratio, adam_step)