59 def evaluate(self):
60 if comm.get_world_size() > 1:
61 comm.synchronize()
62 features = comm.gather(self.features)
63 features = sum(features, [])
64
65 pids = comm.gather(self.pids)
66 pids = sum(pids, [])
67
68 camids = comm.gather(self.camids)
69 camids = sum(camids, [])
70
71
72 if not comm.is_main_process(): return {}
73
74 else:
75 features = self.features
76 pids = self.pids
77 camids = self.camids
78
79 features = torch.cat(features, dim=0)
80
81 query_features = features[:self._num_query]
82 query_pids = np.asarray(pids[:self._num_query])
83 query_camids = np.asarray(camids[:self._num_query])
84
85
86 gallery_features = features[self._num_query:]
87 gallery_pids = np.asarray(pids[self._num_query:])
88 gallery_camids = np.asarray(camids[self._num_query:])
89
90 self._results = OrderedDict()
91
92 if self.cfg.TEST.AQE.ENABLED:
93 logger.info("Test with AQE setting")
94 qe_time = self.cfg.TEST.AQE.QE_TIME
95 qe_k = self.cfg.TEST.AQE.QE_K
96 alpha = self.cfg.TEST.AQE.ALPHA
97 query_features, gallery_features = aqe(query_features, gallery_features, qe_time, qe_k, alpha)
98
99 if self.cfg.TEST.METRIC == "cosine":
100 query_features = F.normalize(query_features, dim=1)
101 gallery_features = F.normalize(gallery_features, dim=1)
102
103 dist = self.cal_dist(self.cfg.TEST.METRIC, query_features, gallery_features)
104
105 if self.cfg.TEST.RERANK.ENABLED:
106 logger.info("Test with rerank setting")
107 k1 = self.cfg.TEST.RERANK.K1
108 k2 = self.cfg.TEST.RERANK.K2
109 lambda_value = self.cfg.TEST.RERANK.LAMBDA
110 q_q_dist = self.cal_dist(self.cfg.TEST.METRIC, query_features, query_features)
111 g_g_dist = self.cal_dist(self.cfg.TEST.METRIC, gallery_features, gallery_features)
112 re_dist = re_ranking(dist, q_q_dist, g_g_dist, k1, k2, lambda_value)
113 query_features = query_features.numpy()
114 gallery_features = gallery_features.numpy()
115 cmc, all_AP, all_INP = evaluate_rank(re_dist, query_features, gallery_features,
116 query_pids, gallery_pids, query_camids,
117 gallery_camids, use_distmat=True)
118 else:
119 query_features = query_features.numpy()
120 gallery_features = gallery_features.numpy()
121 cmc, all_AP, all_INP = evaluate_rank(dist, query_features, gallery_features,
122 query_pids, gallery_pids, query_camids, gallery_camids,
123 use_distmat=False)
124 mAP = np.mean(all_AP)
125 mINP = np.mean(all_INP)
126 for r in [1, 5, 10]:
127 self._results['Rank-{}'.format(r)] = cmc[r - 1]
128 self._results['mAP'] = mAP
129 self._results['mINP'] = mINP
130
131 if self.cfg.TEST.ROC_ENABLED:
132 scores, labels = evaluate_roc(dist, query_features, gallery_features,
133 query_pids, gallery_pids, query_camids, gallery_camids)
134 fprs, tprs, thres = metrics.roc_curve(labels, scores)
135
136 for fpr in [1e-4, 1e-3, 1e-2]:
137 ind = np.argmin(np.abs(fprs - fpr))
138 self._results["TPR@FPR={:.0e}".format(fpr)] = tprs[ind]
139
140 return copy.deepcopy(self._results)