46 def cal_dist(metric: str, query_feat: torch.tensor, gallery_feat: torch.tensor):
47 assert metric
in [
"cosine",
"euclidean"],
"must choose from [cosine, euclidean], but got {}".format(metric)
48 if metric ==
"cosine":
49 dist = 1 - torch.mm(query_feat, gallery_feat.t())
51 m, n = query_feat.size(0), gallery_feat.size(0)
52 xx = torch.pow(query_feat, 2).sum(1, keepdim=
True).expand(m, n)
53 yy = torch.pow(gallery_feat, 2).sum(1, keepdim=
True).expand(n, m).t()
55 dist.addmm_(query_feat, gallery_feat.t(), beta=1, alpha=-2)
56 dist = dist.clamp(min=1e-12).sqrt()
57 return dist.cpu().numpy()
60 if comm.get_world_size() > 1:
62 features = comm.gather(self.
features)
63 features = sum(features, [])
65 pids = comm.gather(self.
pids)
68 camids = comm.gather(self.
camids)
69 camids = sum(camids, [])
72 if not comm.is_main_process():
return {}
79 features = torch.cat(features, dim=0)
82 query_pids = np.asarray(pids[:self.
_num_query])
83 query_camids = np.asarray(camids[:self.
_num_query])
87 gallery_pids = np.asarray(pids[self.
_num_query:])
88 gallery_camids = np.asarray(camids[self.
_num_query:])
92 if self.
cfg.TEST.AQE.ENABLED:
93 logger.info(
"Test with AQE setting")
94 qe_time = self.
cfg.TEST.AQE.QE_TIME
95 qe_k = self.
cfg.TEST.AQE.QE_K
96 alpha = self.
cfg.TEST.AQE.ALPHA
97 query_features, gallery_features = aqe(query_features, gallery_features, qe_time, qe_k, alpha)
99 if self.
cfg.TEST.METRIC ==
"cosine":
100 query_features = F.normalize(query_features, dim=1)
101 gallery_features = F.normalize(gallery_features, dim=1)
103 dist = self.
cal_dist(self.
cfg.TEST.METRIC, query_features, gallery_features)
105 if self.
cfg.TEST.RERANK.ENABLED:
106 logger.info(
"Test with rerank setting")
107 k1 = self.
cfg.TEST.RERANK.K1
108 k2 = self.
cfg.TEST.RERANK.K2
109 lambda_value = self.
cfg.TEST.RERANK.LAMBDA
110 q_q_dist = self.
cal_dist(self.
cfg.TEST.METRIC, query_features, query_features)
111 g_g_dist = self.
cal_dist(self.
cfg.TEST.METRIC, gallery_features, gallery_features)
112 re_dist = re_ranking(dist, q_q_dist, g_g_dist, k1, k2, lambda_value)
113 query_features = query_features.numpy()
114 gallery_features = gallery_features.numpy()
115 cmc, all_AP, all_INP = evaluate_rank(re_dist, query_features, gallery_features,
116 query_pids, gallery_pids, query_camids,
117 gallery_camids, use_distmat=
True)
119 query_features = query_features.numpy()
120 gallery_features = gallery_features.numpy()
121 cmc, all_AP, all_INP = evaluate_rank(dist, query_features, gallery_features,
122 query_pids, gallery_pids, query_camids, gallery_camids,
124 mAP = np.mean(all_AP)
125 mINP = np.mean(all_INP)
127 self.
_results[
'Rank-{}'.format(r)] = cmc[r - 1]
131 if self.
cfg.TEST.ROC_ENABLED:
132 scores, labels = evaluate_roc(dist, query_features, gallery_features,
133 query_pids, gallery_pids, query_camids, gallery_camids)
134 fprs, tprs, thres = metrics.roc_curve(labels, scores)
136 for fpr
in [1e-4, 1e-3, 1e-2]:
137 ind = np.argmin(np.abs(fprs - fpr))
138 self.
_results[
"TPR@FPR={:.0e}".format(fpr)] = tprs[ind]