Definition at line 66 of file gcn_utils.py.
◆ __init__()
| gcn_utils.TCNBlock.__init__ |
( |
| self, |
|
|
| in_channels, |
|
|
| kernel_size, |
|
|
| stride, |
|
|
| dropout = 0 ) |
Definition at line 68 of file gcn_utils.py.
72 dropout=0):
73 super().__init__()
74 padding = ((kernel_size - 1) // 2, 0)
75 self.kernel_size = kernel_size
76 self.tcn = nn.Sequential(
77 nn.BatchNorm2d(in_channels),
78 nn.ReLU(inplace=True),
79 nn.Conv2d(
80 in_channels,
81 in_channels,
82 (kernel_size, 1),
83 (stride, 1),
84 padding,
85 ),
86 nn.BatchNorm2d(in_channels),
87 nn.Dropout(dropout, inplace=True),
88 )
89
◆ forward()
| gcn_utils.TCNBlock.forward |
( |
| self, |
|
|
| x ) |
Definition at line 90 of file gcn_utils.py.
90 def forward(self, x):
91 x = self.tcn(x)
92 return x
93
◆ kernel_size
| gcn_utils.TCNBlock.kernel_size |
◆ tcn
The documentation for this class was generated from the following file: