14 Log the accuracy metrics to EventStorage.
16 bsz = pred_class_logits.size(0)
18 _, pred_class = pred_class_logits.topk(maxk, 1,
True,
True)
19 pred_class = pred_class.t()
20 correct = pred_class.eq(gt_classes.view(1, -1).expand_as(pred_class))
24 correct_k = correct[:k].view(-1).float().sum(dim=0, keepdim=
True)
25 ret.append(correct_k.mul_(1. / bsz))
27 storage = get_event_storage()
28 storage.put_scalar(
"cls_accuracy", ret[0])
32 num_classes = pred_class_logits.size(1)
38 soft_label = F.softmax(pred_class_logits, dim=1)
39 smooth_param = alpha * soft_label[torch.arange(soft_label.size(0)), gt_classes].unsqueeze(1)
41 log_probs = F.log_softmax(pred_class_logits, dim=1)
43 targets = torch.ones_like(log_probs)
44 targets *= smooth_param / (num_classes - 1)
45 targets.scatter_(1, gt_classes.data.unsqueeze(1), (1 - smooth_param))
47 loss = (-targets * log_probs).sum(dim=1)
52 probs = F.softmax(pred_class_logits, dim=1)
53 entropy = torch.sum(-probs * log_probs, dim=1)
54 loss = torch.clamp_min(loss - conf_penalty * entropy, min=0.)
58 non_zero_cnt = max(loss.nonzero(as_tuple=
False).size(0), 1)
60 loss = loss.sum() / non_zero_cnt