44 def __init__(self, params, lr=required, momentum=0, dampening=0,
45 weight_decay=0, nesterov=False):
46 if lr
is not required
and lr < 0.0:
47 raise ValueError(
"Invalid learning rate: {}".format(lr))
49 raise ValueError(
"Invalid momentum value: {}".format(momentum))
50 if weight_decay < 0.0:
51 raise ValueError(
"Invalid weight_decay value: {}".format(weight_decay))
53 defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
54 weight_decay=weight_decay, nesterov=nesterov)
55 if nesterov
and (momentum <= 0
or dampening != 0):
56 raise ValueError(
"Nesterov momentum requires a momentum and zero dampening")
57 super(SGD, self).
__init__(params, defaults)
65 def step(self, closure=None):
66 """Performs a single optimization step.
68 closure (callable, optional): A closure that reevaluates the model
72 if closure
is not None:
73 with torch.enable_grad():
76 for group
in self.param_groups:
77 if group[
'freeze']:
continue
79 weight_decay = group[
'weight_decay']
80 momentum = group[
'momentum']
81 dampening = group[
'dampening']
82 nesterov = group[
'nesterov']
84 for p
in group[
'params']:
89 d_p = d_p.add(p, alpha=weight_decay)
91 param_state = self.state[p]
92 if 'momentum_buffer' not in param_state:
93 buf = param_state[
'momentum_buffer'] = torch.clone(d_p).detach()
95 buf = param_state[
'momentum_buffer']
96 buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
98 d_p = d_p.add(buf, alpha=momentum)
102 p.add_(d_p, alpha=-group[
'lr'])